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On the Stability of Bayes Estimators for Gaussian Processes

by

Ian W. McKeague

Abstract

We consider the Bayes estimator 6. for a Gaussian signal process

observed in the presence of additive Gaussian noise under contamination

of the signal or noise by QN-laws, introduced by Gualtierotti (1979).

Upper bounds on the increase in the mean square error of 8. over the

minimum possible mean square error under contaminated noise or contaminated

signal are given. It is shown that the performance of C. is relatively

close to optimal for small amounts of contamination.

WYT C
DTIC 21,

Lb O / /*(



1. Introduction.

The Bayesian approach to the robust estimation of a signal in the

presence of noise has been studied extensively in recent years. Some

authors, including Blum and Rosenblatt (1967), Solomon (1972), Watson

(1974) and Berger (1982) have discussed procedures which can be used

when only vague information concerning the prior distribution is avail-

able. Others, including Box and Tiao (1968), Maseliez (1975) and

Ershov and Liptser (1978) have constructed estimators which are robust

with respect to contamination of the noise distribution.

The purpose of the present article is to study the performance of

the usual Bayes estimator (denoted 6o) for Gaussian prior and additive

Gaussian noise under certain deviations from normality in either the

prior or the noise distribution. It is shown that the performance of

6. is relatively close to optimal for small amounts of contamination. The

main results of the paper give upper bounds on the increase in the mean

square error of 6. over the minimum possible mean square error under a

specific contaminated prior or contaminated noise distribution. These

results make it possible to assess the loss caused by the use of 6. under

non-Gaussian conditions. The contaminated Gaussian laws used in this

paper are QN-laws (quasi-noise laws) which were introduced by Gualtierotti

(1979). ON-laws form an appropriate class of contaminated Gaussian lews

for some infinite dimensional models arising in coumnication theory (see

Gualtierotti, 1980). Gualtierotti (1982) recently studied the stability
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of signal detection under mixtures of Gaussian laws as well as QN-laws.

Contamination by Gaussian mixtures was shown to lead to worse behavior

than contamination by QN-laws. In the present paper attention is

restricted to contamination by QN- laws.

Section 2 contains some preliminary material on measures on locally

convex spaces and a derivation of the Bayes estimator for Gaussian prior

and Gaussian noise on infinite dimensional spaces. Section 3 contains a

discussion of QN-laws defined on locally convex spaces and a description

of the posterior distribution when the prior or the noise is a QN-law.

Upper boumds for the increase in the mean square error of S. over the

minimum possible mean square error under a QN-law prior or QN-law noise

are given in Section 4. Some examples, including an application to

Kalman filtering, are discussed at the end of the paper.

2. Preliminaries.

Let (S,S) and (T,T) be measurable spaces, PXY a probability measure

on S x T, uX and py the projections of vXy" The conditional distribution

"xy' if it exists, is defined to be a probability measure on S for a.e.

jd y(y) such that uXly (A) is measurable as a function of y for each

fixed A c S and

NY (A x B) = fB uXlyCA)duy(Y) for all A e S and B e T.

It follows from the definition that PXiy << X a.e. duy(y). The following

lemma, which is proved using Fubini's theorem, states the abstract Bayes

formula of Kallianpur and Striebel (1968)..
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Lema 2.1. Suppose that the conditional distribution P , x exists and

the map (xy) d 2  (y) is S x T measurable. Then the conditional

distribution exists and

dY(x) . y ) x xx
Sd a.e. dlixe y).

The probability measure uXY is to be defined through a prior dis-

tribution uX on S and a noise distribution uN on T. S is the

parameter space and T is the observation space. Let f:S x T e T be

an S x T/T measurable map. Define PXY by oxy (A) =

X 0 uN ((x,y) : (x,f(x,y)) e A). It is easily seen that PYix exists

and is equal to rN* x where fx : T - T is defined by fx(y)=f(xy).

When P exists it is called the posterior distribution.

Before going further we need to make a brief detour through the

theory of probability measures on topological vector spaces. Let E

denote a locally convex topological vector space with topological dual

El. The cylindrical a-algebra on E is the a-algebra generated by El

and is denoted a(E'). Let u be a probability-measure on a(E') such

that fE<fD 2 di(x) <-, for all f in E'. Then u has a mean m

and a covariance operator R and under mild conditions m belongs to

E and R maps E' into H (See Vakhania and Tarieladze, 1978).

Schwartz (1964) showed that if E is quasi-complete then each covariance

operator R:E' * E has a unique Hilbert space H, which is a vector subspace

of E, such that the natural injection J of H into E is continuous

and R a jj*. The Hilbert space H is called the reproducing kernel

Hilbert space (RIHS) of R. If the RKHS is separable with a CONS
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n 2 1) then the covariance operator admits a series representation

R - jen 0 je n, where (uu)(f) = <f,mu, for uE,feE', and the
nseries converges to R in the strong operator topology:

S<f, Jn> jen -* Rf in E for all f in E'. A probability measure

p on o(E') is Gaussian if each f in E' is a Gaussian random

variable under u. The methods used in this paper depend on the existence

of a separable RKHS for the covariance operators of Gaussian measures.

For this reason, we assume throughout that E is quasi-complete and each

Gaussian measure u has a mean m e E, a covariance operator R:E' 0 E

and a separable RKHS. Such a Gaussian measure is specified by U a N(m,R).

Now assume that u = N(O,RN) on a(E') with RKHS denoted HN and

injection jN:HN E. x = N(mXRx) on aCHN)' (S,S) - ( ))'

(TT) - (Ea(E')) and f(xy) u jN(x) + y. Let LN denote the closure of

E' in L2(E,PN), UN:LN * HN the unitary operator defined by

UNf = jnf, for f in E'. RX is a trace-class operator on HN SO it

has a series representation ex = n eeen where {en*n~lj is a

CONS in HN , Tn ! 0 and tr(RX ) I T n < f. I denotes the identity

operator on H .

The following proposition, well known for finite dimensional spaces,

gives the posterior distribution uXly for Gaussian prior IX and

Gaussian noise uN .

Proposition 2.2. Let uN a N(ORON) UX a N(mX.RX). Then the posterior

distribution uXly exists as a probability measure on a(HN) and is

given by PXjy a N(mxtye RXIy), where

ally • n [u~l(en)] ( y ) + <ee> ) l[ l( ,)l* tn n n

KA



Proof. Denote -1 e) r by a ny). The anare i.i.d. N(0,1)

random variables under N so that mXb, c a.e. dUN(y). But,

No ";auy for each x e HN (cf. MeKeague, 1982, Theorem 2. 1) so

that by Baker (1976) lay %a u.. Thus "'Xly e£H a.e. diay(y) and the

Pair (mxyRx~y) defines a Gaussian measure on cv(HN) a.e. py)

Now check the conditions of Lemmua 2.1. iayl exists and is equal to

uN-xl-The map (x,y) . dlayix/diay(y) is a(HN) x a(E') measurable

since

_____ dlaN

u.Z y) exp -1x)- .~lX N

where the Radon-Nikodym derivative dua~ef 1' /dpN is given in McKeague

(1982, Theorem 2.1), for instance. Now applying Lemma 2.1, the character-

istic functional 10I (U) f fe i~u,x> duax(x). for U a H , as a function

of u, is ptoportional to JH 1i kx uX() where

k
Zk(x) a exp I (ice *uxcen +x~ a(y)cenx -I(ex}

Provided that {Zkak k 1) is uniformly integrable, the result now follows

from routine calculations since the <en xx-, n a 1 are independent

N(<e e, n random variables under ux Butn
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k
fiilZk(x)12dpX(x) S f x k2~~(yc~

Se 2 ny) <on, x)dpX x)~nul

~k
exp2 (CL 2 (y)T + Ca(y)<enMX> )1,
ex"( n n n

which shows that ({Zk 2 1) is a.e. duy(y) uniformly integrable with

respect to U , as required.

3. QN-Laws.

Let E1 and E2 be locally convex spaces. Suppose that u f N(m,R)

on o(E) with RKHS denoted H and injection j : H.o E,; also let

A: E1  be a symetric non-negative operator, a c R, a e E2 and

J : E E be a continuous linear map. Provided

c ' (02 + <A(J(x)-a). J(x)-ai')d~z(x) <-,

define a probability measure v on a(E,) by v = f c "  0

otherwise by the relation

F4 = C(Cg + <A(J(x)-a), J(x)-a>).

The measure v is called a QN-law and was introduced on Hilbert space by

Gualtierotti (1979). If J*AJ has a separable RKHS then c-lI if and

only if j*J*AJj is trace-class, and in this case

c- a2  tr(j*J*AJj) + <A(J(m)-a), J(m)-a>.

It is always possible to assume that a is either zero or one. We shall

assume that a = I and write v a QN((J,aA),p). When E1  E2 and J

is the identity map write v a QN((aA),u). Gualtierotti (1980) calculated

' the mean and covariance operator of v for the case of a separable Hilbert

space. It is possible to extend this result to separable Banach spaces as

follows.

t~

"o*.
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. - . . . . . . . . . _ .

. Lemma 3.1. Suppose that E is a separable Banach space and J*AJ has

a separable RKHS. Then the mean mQ and covariance operator R of v

are given by

m. m U

RQ . R + 2cRJ*AJR- ugu,

where u = 2cRJ*A(J(m)-a).

Proof. (Sketch) Assume that m a 0 and consider just the evaluation of R,.

Let J*AJ = lgn*@n' g. E,'- Then, for f c E I
n

fE <fX><A(X).j(X) > dy(x) a I fE <f,X> 2 eg ,X>2 d(x),
n 1

so that we can reduce to evaluating integrals of the form
f- <ffx> 2 <g,x> 2 du(x). Choose hn e E1 such that j*(hn), n 2 1 is a

11

CONS for H. Define
k

rkxu ) ch ,x>Rh, x . E1 .F' n= n

Then, by Tien (1978, Lemma 2), rkx converges a.s. [u] to x. But

fE I <f.wkx> 4 ,g"rkXq >dp~x) :S {(f. <f,w k x>8 dti(x)) UE 1 ,g,wkx,8 du CxJl'

:S 105 <Rf,f> 2 <Rgg>2.

k
sinco <f,wkx . is a N(O, I <Rh n,> 2 ) random variable and

nal

k

I <hn ,f >2 S 4Rff >. It follows that (<f,WkX>2 <g,wkX> 2 . k z 1)

nml

is uniformly integrable and the Lebesgue convergence theorem can be applied.

The integral cH <f.WkX> 2 <g,WkX> 2 di (x) can be calculated using the fact
1~



that chn,x> , n a 1 is an i.i.d. N(O,1) sequence of random variables

with respect to m. 0

The next proposition shows that the posterior is a QN-law if either

the prior is Gaussian and the noise is a QN-law or the prior is a QN-law

and the noise is Gaussian. Let PN = N(QN). vX = N(mXRX) as in

Section 2 and let uXly denote the corresponding posterior distribution

given in Proposition 2.2.

Proposition 3.2. (i) If the prior is u a N(mX,RX) and the noise is

vN = QN((a,A),uN) then the posterior is vXly = QN((jN y-a,A),Xjy).

(ii) If the prior is vX = QN((aA),pX) and the noise

is uN = N(ORN) then the posterior is vXjy = QN((a,A),uxy).

The proof of this proposition uses the following consequence of

Lemma 2.1.

Lemna 3.3. Let pXy and vXy be probability measures on S x T such that

(a) pX'vX and Uy"y;

(b) yx and vyI exist and yl tx vYIX a.e. dpx(x);

(c) the maps (xy) --> dVyIx/ dAyIxCY), (xy) -> duyIx/duy (y)

are S x T measurable. Then VXly exists, vx yXly a.e. du1(y) and

dv X "u v Y X dv~ a.e. duX@vy~xY).
d (x)Y ddvyI X

dux x)y aY~' (..d1Y)y(*

Proof. Using (a) and (b) get

dv¥[x  dv y x  d d

( Y )-(y) =v!*a; a.e. duX®uy(xy)
dy d'1Yjx fty Y
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so that, by (c), the function (x,y) d> dwlx/ dvy(y) is S x T

measurable and v exists by Lemma 2.1. The proof is completed by

applying Bayes formula. U

Proof of Proposition 3.2. (i) 1yvvy since vy xvy x for all x H N.

Y I jX(y) = CN (1 + <Aya ~)yajx

so that the map (x,y) i-> dvyjx/ duylx(y) is aCHN) x aCE') measurable.

The map (x,y) t--> duIx/ duyy) is a(HN) x a(E ') measurable from the

proof of Proposition 2.2. Thus, by Lemma.3.3 vXly exists and

ddv -

du (X) = Ad-* y) CN(1 + <AJNx-(y-a)),j N (y-a)>,
Xly y

which shows that VXly =2 QN((JNY-a,A),pX Iy). The proof of (ii) is similar. ,

4. Bayesian Robustness.

Le-4 6 denote a decision rule for estimating the true signal

x c HN . 6 is a measuzable function from the observation space E into

the parameter space H N- For prior vX and noise vN the mean square

error of 6 is given by

r(VXPV'NI6) E j1 x-a(y)l 2H dv (x,y).

The following functions of vX and vN will be used to measure the

robustness of a decision rule 6.: the increase in the mean square error

in using 6o over the minimum possible mean square error,

ACvx,vN,6o) a r(vX,vN,6.) - inf rvXvN,6),
6

and the ratio of the mean square error using 6o to the minimum possible

mean souare error,
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O O r(vXDvN,6)
vNxvN6o) luf r (vx ,S) •

5 N

Let 6. be xhe optimal (in the mean square sense) estimator for Gaussian

prior u X = N(mxRx) and Gaussian noise u. a N(O.R). Then 6 o(Y) = XY,

the posterior mean given in Proposition 2.2. The results of this section

give some upper bounds on A6vxvN,6O) and fCvx, vNIO) for vX and vN

as QN-law contaminations of p and uN respectively. First we evaluate

the mean square error of So under contaminated prior or contaminated noise.

Denote RI = RXIy = RX(I + RX)-I

Lemma 4.1. (i) Let v = QN((a,A),pX). Then

2
r(vX,N,6o.) a tr(R I ) + 2citr(AR,),

where c 1 1 trARx + Amx-a) ,x-a>.

(ii) Let vN - QN((a,A,U,). Suppose that E is a separable

Banach space and A has a separable RKHS. Then

2
r(JX,VN,S) - tr(RI) * 2cN tr(ANRj)

p-.

where A JAj) and C; - 1l+tr(AN)+ Aaa>.

Proof. (i) r(vx'vN-6.) = IHNIE II Xjy - xIP d1jyx(y)dvx(x). But

1 n <xmxen>

mxl,- X = J UN (eI(Y) - <xen> >e ,
n2:1 n n

so that

fEll 2dIyXll -dlxny I , [U-1 (en)]CY)-<X,en>- <-mxse n}2duylxy)
(lT) 2fE{[N (n)]y-c n> Tn

Uk I n n~

n
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since [UN (en)](y) - <enx is a N(O,1) random variable under u YIx,

By Lemma 3.1

<en ,XX )T>2dVxCx) n +e

so that
T 2

r= C n  ( 2c e >)
-nkl n n

tr(Rx(I + RPX)') + 2Cxtr(AR 2 (I + RX) 2).

(ii) is proved in a similar way. 0

'The following theorem gives an upper bound on the increase in the mean

square error of 6e over the minimum possible mean square error under a

contaminated prior distribution.

Theorem 4.2. Let v = QN((a,A),pa) , Then

1

where cj 1 + tr(AR1).

Proof. It is easily checked that ACvXh8N,Be) = fEll mXy - IYI2 dvy(y).

By Proposition 3.2 and Lemua 3.1, Q "XjY + 2cXjy Rxl A~mxY'a)" so that"ily jy4cx y sota

A(vX, 6.) : 4c, tI1hAII2Je jmxl -all 2dvyCy).

Now consider
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fEll !mXly all2 d1JYl(y) *~~l mI(y-a)2 uylx (y)v- x. >

nl n

<e , x- a> <e.-a t
n

(T - n Xa>

(r!)2 (<. {c , X-a> + 2

Use Lemmta 3.1 to get

JenenXxa

-F+2 * RA~ c n)e#X mxa + 0#Xa2
ni nn n(Xa>e

This yields
T 

2
fFmXI Y-al112 X (1+r 2cRXARXe'en>

+ 4 C X 4 A R X 2 ( IR X ) - 1 0 l nD j~ n ) ' + 2 c X ' 3n ~

!trR, 2 (I+RX) -l + cx trARx"(IRA) -2 + 4cX1l ARq CIeRX) 1lIl 11 "'X~aF

and the result follows.

It is now possible to give an upper bound on Ovand since

* we are mainly interested in the effects of small amounts of contamination,

we state it in the following form.
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Corollary 4.3. Let vx = QN((aeA)hx), where e>O. Then

411 R IA11 2 [tr(RXR1) + II ua-alJl J
*(VXpN, 8 O) :' 1 + tr(R) (1 o(l))e 2, as c-O.

In particular, (vX, ,8,) = 1 C (c 2 ), .O.

Proof. The result follows from Proposition 4.1, Theorem 4.2 and the identity

ONv X JN 6. 1 + r- (A(VXs, ,6.)r(vX.1,N.) - AC x No)

The next theorem gives an upper bound on the increase in the mean square

error of 6. over the minimum possible mean square error under a contaminated

noise distribution. In order to use the known formulae (Lemma 3.1) for the

mean and covariance operator of a QN-law on E it is assumed for the remaindcr

of this section that E is a separable Banach space and A has a sepaxable

RKHS.

Theorem 4.4. Let vN a QN((a,),N). Then

2, 8 I11 RIAN II [trRXRI e 2
&(PxvN'8':S 82 2cN trANRlJ

.tr R(ARN 2 2 3 1

here AN J;AjN and c- 1 tr(AN ).

Proof. By Proposition 3.2, vXly a IN((JNy-a9A)vX ly) and by Lemma 3.1,

ly "xly " X y Rl JNA(JNMXly'Y + a). Thus

I

I-
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A(axqv N .8,) 'E" l 'X_Mjy"j dVi(y)

:9 4c ' RiJA(NmXIYyY .)f 2 duy~(y)

K~~ 1E 11 UX IINI Y'E" 112yx dvY (Y)

+11p11 Rljp(j~e%-y * a) 112 dvy(y)J.

It is easily chocked that

2
ht 11 MXy-"X 112 dvy(y) - tr(RXRI) + 2cNtr(A N ).

Note that hQmj xu and j NRXJ* + + NNARN ueu

who" i u = 2 cNRNA(s). Hence

- tT(Rij~ARaj) *11 RjY(a-Uf

tT(R~~ 2R *R JA(a-u) 2

2 ,2, . *n . 2

t(R (ANRXAN 2 + 2cN ~ 1123A~)

*4c.cR~J;A(a) .RlA ;~A(&)21

2 *2 3,(. *
5tr(R (A NRXAK N +. 256A) (1+ 4cNII ANtI )<AR.NAa,a-.

The result follows imediately.

Corollary 4.5. let vN a Q((aeeA)&PN)o where VO. Then

O(I''vN'0) I 1 S[I11 RN I12 tryR # trRI(ANRXAN4N)* (tAa5

as £40O. In particular. #(UZv N 6*) *1 + 0(ed).eO
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Examples

1. 2ft one-dimensiona oase with contaminated prior. Let X and N be

independent random variables with distributions vX - QN((mX,1).V X) and

2 2 2
114 N(OON ) respectively. where mX N(mX,ai). Then Y a X * N, A coN

and RX a p, the signal to noise ratio. By Corollary 4.3
4En (X-S=yO/  4.3

inf E(X-6Cy') z  +()2

independent random variables with distributions uj = N~mx.Oxi) and
1 2

VN - QN((O~c).ua1 ) respectively, where UNa N(O,a N) Then A N =CON,

RX z p and by Corollary 4.S

E (X_8.( y) 2  4 2,_..)(lioCl))e2
inf E(-6Y z +

3. zKalm filteing in the presence of contamination. Let the signal

process Xt  and the observation process Yt be given by the stochastic

differential equations
1I

t =-Xtdt . dlf

' 2
and dYt - Xdt t d t

1 2
(0;tsl), where I and W are independent Wiener processes, 0>0, and

1 2X* is a 1(0!M) random variable which is independent of W and W

Then E - C[O,1], H1 = L2 [O,11, JN : H E " B is defined by

J" (f)(t) " f(s)ds, for f. , t,[O.l]. %N is the integral operator

with kernel min (st) and RX is the integral operator on L2 [O,] with

k'srnel e s t L . o can be expressed as the solution of a stochestic

:.
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differential equation for the interpolation of a Gaussian process (see

Liptser and Shiryayev, 1978).

a) Contaminated signal. Let A be the identity operator on L2 [0,1]

and let va = QN((O,eA),pX), where aX a N(O,Rx). By Corollary 4.3

O(vXVN,S.) S I + 4 tr(RX)(lo(l))sZ. But tr(RX) a 1/20 so that

O( €[XON, ") :g 1 + .0=l~o~l))C2 .

b) Contaminated noise. Let A be the natural injection of C[0,1] irto

C*[O,1] and let vN = QN((OCA),p), where u. is Wiener measure on C[O,1.

Thus dvN/dpW(x) • cN( . efofxdt), where CN is a constant. By Corollary

4.5, O(uX,vN 8 .6) I 24 tr(RX)(trAN)2 (l~o(l))e2. But AN is the integral

operator on L2 [0,] with kernel min (s,t). Thus trAN) - and it

follows that

O.UX€N.6) S 1 + <l~o(x))c2.
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